26 March, 2015

The Rise of the Catalina Anti-Eddy

At 12AM yesterday, Wednesday, March 25, 2015, I was watching several episodes of Why Planes Crash, one of my favorite Weather Channel series. You know how, at the bottom of every TWC screen, there's this changing strip that shows the conditons in the local cities? Anyhow, the wind directions shown in Laguna Beach and San Clemente were quite extraordinary to say the least. What were they exactly? San Clemente was showing due-easterly winds at 11mph. Water is transported toward the north in response to winds blowing from a direction like that. Meanwhile, in Laguna Beach, the winds were from the SSW at 6mph. That is a wind pattern that tends to favor anticyclonic gyrogenesis through Ekman transport, as the below diagram demonstrates:


Fast-forward to last night, and the pattern changed. Instead of blowing out of different directions, both were showing due-easterly winds of 11mph and 15mph, respectively, while winds in Irvine were blowing from the WNW. Using Weather Underground's awesome app, I decided to check to see if there was any boundary separating the differing wind directions (usually marked by a dashed line on the map). Sure enough, there was, and it was retreating westward while continuing to intensify.

Then, I checked the sea surface temperature map this morning. Sure enough, the wind vector boundary, combined with the gyre in question, ended up retreating to that region just south of Catalina Island that tends to favor the formation of gyres:


Whereas cyclonic gyres — which is what the famous Catalina gyre typically is — tend to upwell in the middle and downwell around the edges, anticyclonic gyres do the opposite. They downwell in the middle, and this sea surface temperature profile reflects that.

What makes this so peculiar is that when it comes to gyres, whether cyclonic or anticyclonic, it doesn't matter what direction winds come from, they intensify regardless. If the winds blow from the east or southeast, they induce rear-flank downwelling, which speeds up the subsurface rotation, intensifying the gyre, which in this case warms up the ocean through gyre downwelling. If they blow out of the west or northwest, the water is transported past the eastern side of the gyre, speeding up the rotation on the surface, intensifying the gyre, again causing ocean warming. If they blow out of the southwest, the water is transported past the northeast side of the gyre, again speeding up the rotation, intensifying the gyre and causing more ocean warming. And finally, if the winds blow out of the northeast, like they do ever so often during Santa Ana season, the water passes the gyre on the western flank, once again intensifying the gyre's rotation, AND, since those winds are typically dry, they induce more evaporation of the water in the middle of the gyre, resulting in anomalously high gyre salinity, and thus, an ocean warming double whammy.

So now we've got a runaway feedback on our hands. Combine this with a potentially highly active El Niño hurricane season in the eastern Pacific once again, and, yeah, this could get interesting.

07 March, 2015

Experiment and Result: How Salinity Affects Sea Surface Temperature

When you know you're in a devastating drought, what's the last type of weather forecast you'd ever want to hear when watching TV? If that drought is in the Midwest, it would be Chinook winds, would it not? In California, of course, which is already in its worst drought in 1200 years, that worst possible forecast would of course be the hellish Santa Ana winds. Yet those winds were exactly what were forecasted yesterday. Despite the fact that the subtropical jet is intensifying again and EPO is going positive, California was still not getting in on the action. So, I decided it was time to investigate, figure out what was going on, and take action to counter that myself.

For starters, I have seen some rather interesting photos of people floating on the surface of the Dead Sea without any flotation devices due to how dense that water is, and with explanations that the density is in turn due to the salinity. Also, I am fully aware that a combination of temperature and salinity, with salinity being by far on top, is what drives the thermohaline circulation, since warm water with dry air on top of it (which can be either hot/dry or cold/dry and still have the same effect) tends to evaporate faster, and since evaporation leaves all the salt behind, the water that is left behind becomes saltier, denser, and thus, more prone to downwelling.

Therefore, I thought of a rather ingenious hypothesis the night before (worship/post-worship fun night): What would happen to the sea surface temperatures off SoCal if the salinity of the local waters were to suddenly increase during a critical time when hot, dry air is blowing over those waters in the form of Santa Ana winds?

Early the following morning, the day those dry Santa Ana winds were forecast, I decided that it was the perfect opportunity to test that hypothesis. I biked to the beach (specifically Salt Creek Beach in Dana Point) to beat the heat, of course, but I also made a little pit stop on the way there. In Laguna Niguel, practically right on my route there, is a Walmart. I stopped there to see how expensive those one-liter cans of salt were. Sure enough, they cost only 78¢ per can. So, I got four of them, totaling 1 full gallon of pure salt, enough to double the salinity of 33.3 gallons of seawater. Then, I slipped that salt in my backpack, headed down to the beach, spotted a rip current, and dumped all that salt in the water at about 9AM, which is by far the perfect time on a day like that since it gives that increased salt time to force some of the local waters to downwell (and evaporate) prior to those hellish Santa Ana conditions.

From there, I rode back up to Laguna Niguel to have lunch, then went back to the beach, this time to Aliso Beach. When I got there, I got in the water, and noticed that its temperature had indeed risen. And when those (weak) Santa Ana winds then began blowing, the water didn't cool as it normally would have. No, because of the increased local salinity, it actually warmed due to the resulting feedback effect. Remember, when air is dry, water evaporates VERY rapidly. And when salt water evaporates, the vapor becomes fresh water, leaving the salt behind, making the water saltier and denser still. Since water that is dense becomes heavy and wants to downwell, that downwelling pulls heat down with it, making the water even warmer.

I then checked the sea surface temperature map this morning. When I had last checked it prior to that intervention ― sure enough, just before heading down to the beach ― it was indeed anomalously warm, but only in about the low 60's. This morning, however, this tongue of warm water in the upper 60's to low 70's (!) that didn't exist before suddenly stretched from Baja up the coast almost to Los Angeles. Then, as I zoomed out even further, I noticed an almost dead Kuroshio Current with exceptionally cold water choking it out, and also noticed more anomalous equatorial downwelling east of the Date Line, not to mention eastward movement of Asian water against the will of the Trade Winds (the calling card of El Niño).

I was stunned. How could I have known that busting this devastating drought would be that easy? Remember, water that comes in to replace that resulting anomalous downwelling naturally wants to curve to the right due to the Coriolis effect. That means from Mexico, around the tip of Baja, and ultimately northward. Consequently, warm water must also then flow eastward along the equator (which already has a level that is rather imbalanced) to replace THAT water, and so on and so forth. The results I spotted on that map matched perfectly with my hypothesis.

SST anomalies of that scale right off California may result in dry winters, to be fair, but when it comes to summer (read: hurricane season), they couldn't be more beneficial, to say the least. They not only enhance the hurricane season in the eastern Pacific but also the monsoon, which tends to cause a normally dry season to become a season of pop-up convective thunderstorms and dew points in the 70's. What's more, if the resulting SSTs reach a certain threshold (like they did in 2006, when a buoy stationed near Newport Beach reported 80-degree waters and another one further offshore in San Diego County reported SSTs near 83°F) ― 82.8°F ― they end up becoming fuel for tropical cyclones.

Last summer, Hurricane Marie was a storm for the record books, to say the least. It was the first tropical cyclone to reach Category 5 status in the Pacific east of the International Date Line (the dividing line between typhoons and hurricanes) since 2010's Hurricane Celia. Despite not even coming close to California shores and weakening to a tropical storm at the same latitude as Ensenada due to the exceptionally cold waters that normally serve to shield us Californians from hurricanes (that's exactly why you don't usually hear of hurricanes hitting California: cold water), Marie's 160mph sustained winds with 195mph gusts extending a whopping 400 miles out from the eye were enough to send 25-foot waves careening into the California coast from more than 1000 miles away. Surfers, of course, were absolutely loving it, but they were the only ones who were. Those who lived near the coast, especially low-lying regions such as Seal Beach, woke up to find several feet of salt water in their homes, and a lifeguard station up in Malibu was completely washed away into the ocean.

Should a storm like Marie actually take advantage of anomalous sea surface temperatures and make landfall in California at the perfect time, however, it would definitely be the ultimate drought-buster, to be sure. Then again, it's kind of a two-edged sword due to the amount of wind and (especially) flood damage that hurricanes cause, but it would definitely be a sure way to get those reservoirs full and our groundwater up to par. Then again, that's a topic for another post that won't be published until it actually occurs...

05 March, 2015

Evil is Not a "Problem", It's Hard Evidence Supporting Christianity

Ever wonder what the number 1 reason why some people are atheists? Science? Nope, far from it. Intelligence? Again, no. It's actually something far more trivial. It's something that exists (to be sure), but also something whose existence is taken out of context by those who try to argue against us. That something is the evil in the world. They often throw some rather exaggerated claims out there. After all, their arguments do seem valid to some: If evil does exist, why doesn't God do something about it? Why hasn't He? At least, why hasn't He yet? What they don't realize is that without God, evil itself would be good.

That's how you know they're hypocrites. Can you have rust if you don't first have iron/steel for air and/or water to oxidize? Can you have death without first having life? Can you have disease without a host? Pollution without air or water to pollute? No, no, no, and no. Just as rust corrupts metal, just as death corrupts life, disease health, and pollution clean air and water, so too does evil corrupt good. What makes this rather peculiar, however, is that people who go through evil themselves are often the ones to believe those atheist myths.

Atheists love to taunt us in response to that argument by claiming that morals were invented by mankind. Wait, what? Aren't there societies in the present and in the past that actually believe evil to be good? In fact, there are and were. The most prominent example of this is the most evil of evil societies that was Nazi Germany. It was a society in which Hitler made all the rules, and the resulting consequences were catastrophic. Not only did this society lead the world into a war that would dwarf Woodrow Wilson's "war to end all wars" by a factor of 10, but it also would carry out a hellish attempt to systematically exterminate entire races of people, which of course failed since the people that the Nazis tried to exterminate still exist today.

When that war ended and Americans and Brits once again came out on top, a series of criminal tribunals for the heinous acts committed by the Nazi officials began. These became known as the Nuremberg Trials. One by one, the Nazi officials were sent to court and charges were pressed against them. However, these trials couldn't have been more difficult. Why? Why didn't they just surrender? Because the Nazis' moral compass wasn't of God, it was of Hitler.

That's where the refutation to Euthyphro's dilemma comes in. Atheists will often claim that the morality of an act is determined by A, the intent, and B, the effect of that act. But guess what? Having been brainwashed by Hitler, these puppet murderers actually believed that their heinous crimes weren't crimes at all. Nowadays, we actually have an international set of laws against crimes against humanity, such as genocide, along with a UN to enforce them. Back then, however, neither the UN nor the international laws that it legislates/executes existed. Therefore, if it weren't for a divine set of standards to hold those evil people accountable to, the Nuremberg Trials would have been futile. In order to get the Nazis to stop believing that the intent to exterminate Jews and the effect of that intent were good and imbue a sense of guilt into them for their wrongdoings, the argument of a "higher" set of laws at those trials had to be brought up, and at the time, no such code existed except for the one in the Bible.

So, wait, if evil corrupts good as I said above, then why doesn't God constantly work to keep restoring the good in this world? In Revelation 22, He will ultimately "stop" evil. For now, however, He's given us, the church, that job (Matthew 28:16-20). Whether or not that commission is fulfilled depends on how we as Christians act in front of other people. Although we are all human (Romans 3:23), and were saved not by what we do but what Jesus did (Ephesians 2:8-10), the only way we are ever able to save others is by practicing what we preach and not being hypocrites. Otherwise, if we say one thing and do another, we end up setting a bad example to the newbies. Bottom line: Until evil is stopped, it's our job as believers to be the light in the world that the world may see who God is through the example that we as believers set.